Search results for " surface defects"
showing 5 items of 5 documents
Visible-ultraviolet vibronic emission of silica nanoparticles
2014
We report the study of the visible-ultraviolet emission properties and the structural features of silica nanoparticles prepared through a laboratory sol-gel technique. Atomic force microscopy, Raman and Infrared investigations highlighted the 10 nm size, purity and porosity of the obtained nanoparticles. By using time resolved photoluminescence techniques in air and in a vacuum we were able to single out two contributions in the visible emission: the first, stable in both atmospheres, is a typical fast blue band centered around 2.8 eV; the second, only observed in a vacuum around the 3.0-3.5 eV range, is a vibrational progression with two phonon modes at 1370 cm(-1) and 360 cm(-1). By fully…
Bright blue emission of synthesized silica nanoparticles conferred by surface defects
2013
Defect-related visible luminescence of silica nanoparticles
2013
The high photon emissivity in the visible spectral range is one of the most relevant phenomena emerging from the reduction of silica down to nanoscale; hence it is promising for the development of optical nanotechnologies (down converter, probes, display). It is well accepted that the origin of this luminescence is related to the high specific surface (~100 m2/g) that favors the formation of optically active defects at the nanosilica surface. With the aim to clarify the role of specific luminescent defects, here we report a detailed study of spectral and decay features by time-resolved photoluminescence spectra under a visible-UV tunable laser excitation. Our study is carried out on differe…
Insight into the defect-molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles
2016
Luminescence properties due to surface defects in SiO2 are the main keystone with particles that have nanoscale dimensions, thus motivating their investigation for many emission related applications in the last few decades. A critical issue is the role played by the atmosphere that, by quenching mechanisms, weakens both the efficiency and stability of the defects. A deep knowledge of these factors is mandatory in order to properly limit any detrimental effects and, ultimately, to offer new advantageous possibilities for their exploitation. Up to now, quenching effects have been interpreted as general defect conversion processes due to the difficulty in disentangling the emission kinetics by…
Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition
2015
Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O-2 on the surface defect states. A model fo…